Monte Carlo Exact Conditional Tests for Quasi-independence using Gibbs Sampling

نویسندگان

  • Peter W. F. Smith
  • John W. McDonald
  • Jonathan J. Forster
چکیده

A Gibbs sampling approach to estimating the exact conditional p-value for quasi-independence is described. As an example, a test for quasi-independence for the oo-diagonal cells of a 8 8 table is presented. The results are compared with an alternative simulate-and-reject procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov chain Monte Carlo methods for Dirichlet process hierarchical model

Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorised into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...

متن کامل

Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models

Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorized into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...

متن کامل

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Analysis of the Stochastic Conditional Duration Model

A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling scheme employed is a hybrid of the Gibbs and Metropolis Hastings algorithms, with the latent vector ...

متن کامل

2 5 Ju n 20 15 Markov Interacting Importance Samplers

We introduce a new Markov chain Monte Carlo (MCMC) sampler called the Markov Interacting Importance Sampler (MIIS). The MIIS sampler uses conditional importance sampling (IS) approximations to jointly sample the current state of the Markov Chain and estimate conditional expectations, possibly by incorporating a full range of variance reduction techniques. We compute Rao-Blackwellized estimates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994