Monte Carlo Exact Conditional Tests for Quasi-independence using Gibbs Sampling
نویسندگان
چکیده
A Gibbs sampling approach to estimating the exact conditional p-value for quasi-independence is described. As an example, a test for quasi-independence for the oo-diagonal cells of a 8 8 table is presented. The results are compared with an alternative simulate-and-reject procedure.
منابع مشابه
Markov chain Monte Carlo methods for Dirichlet process hierarchical model
Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorised into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...
متن کاملRetrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models
Inference for Dirichlet process hierarchical models is typically performed using Markov chain Monte Carlo methods, which can be roughly categorized into marginal and conditional methods. The former integrate out analytically the infinite-dimensional component of the hierarchical model and sample from the marginal distribution of the remaining variables using the Gibbs sampler. Conditional metho...
متن کاملDEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Analysis of the Stochastic Conditional Duration Model
A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling scheme employed is a hybrid of the Gibbs and Metropolis Hastings algorithms, with the latent vector ...
متن کامل2 5 Ju n 20 15 Markov Interacting Importance Samplers
We introduce a new Markov chain Monte Carlo (MCMC) sampler called the Markov Interacting Importance Sampler (MIIS). The MIIS sampler uses conditional importance sampling (IS) approximations to jointly sample the current state of the Markov Chain and estimate conditional expectations, possibly by incorporating a full range of variance reduction techniques. We compute Rao-Blackwellized estimates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994